Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles
نویسندگان
چکیده
Our research was focused on the evaluation of the photocatalytic and antimicrobial properties, as well as biocompatibility of cotton fabrics coated with fresh and reused dispersions of nanoscaled TiO₂-1% Fe-N particles prepared by the hydrothermal method and post-annealed at 400 °C. The powders were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and X-ray photoelectron spectroscopy. The textiles coated with doped TiO₂ were characterized by scanning electron microscopy and energy dispersive X-ray analyses, and their photocatalytic effect by trichromatic coordinates of the materials stained with methylene blue and coffee and exposed to UV, visible and solar light. The resulting doped TiO₂ consists of a mixture of prevailing anatase phase and a small amount (~15%-20%) of brookite, containing Fe3+ and nitrogen. By reusing dispersions of TiO₂-1% Fe-N, high amounts of photocatalysts were deposited on the fabrics, and the photocatalytic activity was improved, especially under visible light. The treated fabrics exhibited specific antimicrobial features, which were dependent on their composition, microbial strain and incubation time. The in vitro biocompatibility evaluation on CCD-1070Sk dermal fibroblasts confirmed the absence of cytotoxicity after short-term exposure. These results highlight the potential of TiO₂-1% Fe-N nanoparticles for further use in the development of innovative self-cleaning and antimicrobial photocatalytic cotton textiles. However, further studies are required in order to assess the long-term skin exposure effects and the possible particle release due to wearing.
منابع مشابه
Innovative Self-Cleaning and Biocompatible Polyester Textiles Nano-Decorated with Fe–N-Doped Titanium Dioxide
The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO₂ nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. ...
متن کاملSunlight-driven efficient photocatalytic and antimicrobial studies of microwave-assisted Ir-doped TiO2 nanoparticles for environmental safety
A simple, low-cost and an eco-friendly synthesis of Ir-doped titanium dioxide nanoparticles (TiO2 NPs) with an anatase phase by the microwave-assisted method using an aqueous solution of titanium tetra-isopropoxide (TTIP) and iridium (III) chloride monohydrate.<span class="CharOverride...
متن کاملComparison of Ultraviolet Protection Factor of Pure Cotton and Cotton Coated with Titanium Dioxide Nanoparticles using the Electrospinning Method with Two Ultraviolet-C Generators
Introduction: Protection against harmful effects of ultraviolet radiation (UV) is measured under Ultraviolet Protection Factor (UPF) scale. The utilization of protective clothing is the best way to deal with the damage caused by ultraviolet radiation. The purpose of this study was to compare the ultraviolet ray protective factor of pure cotton and cotton coated with ti...
متن کاملImprovement of Photocatalytic Properties of Titanium Oxide Nanoparticles (TiO2) Doped with Cerium Atoms and Evaluation of Methylene Blue Dye and Wastewater antifreeze Treatment
In this study, the photocatalytic and bleaching properties of pure and doped titanium dioxide nanoparticles with 1%, 3%, 5% and 10% Ce dopant were studied using Ce(NO3)3 precursor. The results showed that the highest methylene blue degradation of the sample with 5% cerium impurity was 97% in neutral medium (pH=7) after 75 minutes. The bleaching response to wastewater treatment with 5% cerium im...
متن کاملPhotocatalytic Degradation of Acid Yellow 36 Using Titanium Dioxide Nanocomposites Doped by Zirconium
Introduction: In this research, TiO2-Zr nano-photocatalyst was firstly developed with the aim of improving the photocatalytic activity of titanium dioxide via sol-gel method. The recovery of catalysts in acidic, alkaline and thermal conditions was also studied. Method: This research was done on a laboratory scale. The structures and properties were recognized with (BET), (FT-IR), (FE-SEM), and...
متن کامل